normalize¶
- dragon.vm.torch.nn.functional.- normalize(
 input,
 p=2,
 dim=1,
 end_dim=None,
 eps=1e-12,
 out=None
 )[source]¶
- Apply the \(L_{p}\) normalization to the input. - The \(L_{p}\) normalization is defined as: \[v = \frac{v}{\left\|v\right\|_{p} + \epsilon} \]- Parameters:
- input (dragon.vm.torch.Tensor) – The input tensor.
- p (int, optional, default=2) – The exponent of norm.
- dim (int, optional, default=1) – The first dimension to reduce.
- end_dim (int, optional) – The last dimension to reduce.
- eps (float, optional, default=1e-12) – The value to \(\epsilon\).
- out (dragon.vm.torch.Tensor, optional) – The output tensor.
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 
