BatchNorm3d¶
- class dragon.vm.torch.nn.BatchNorm3d(
 num_features,
 eps=1e-05,
 momentum=0.1,
 affine=True,
 track_running_stats=True
 )[source]¶
- Apply the batch normalization over 4d input. [Ioffe & Szegedy, 2015]. - The normalization is defined as: \[y = \frac{x - \mathrm{E}[x]} {\sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta \]- The running average of statistics are calculated as: \[x_{\text{running}} = (1 - \text{momentum}) * x_{\text{running}} + \text{momentum} * x_{\text{batch}} \]- See also 
__init__¶
- BatchNorm3d.- __init__(
 num_features,
 eps=1e-05,
 momentum=0.1,
 affine=True,
 track_running_stats=True
 )[source]¶
- Create a - BatchNorm3dmodule.- Parameters:
- num_features (int) – The number of channels.
- eps (float, optional, default=1e-5) – The value to \(\epsilon\).
- momentum (float, optional, default=0.1) – The value to \(\text{momentum}\).
- affine (bool, optional, default=True) – Trueto apply an affine transformation.
- track_running_stats (bool, optional, default=True) – Trueto using stats when switching toeval.
 
 
