LayerNorm¶
- class dragon.vm.torch.nn.LayerNorm(
 normalized_shape,
 eps=1e-05,
 elementwise_affine=True
 )[source]¶
- Apply the layer normalization. [Ba et.al, 2016] - The normalization is defined as: \[y = \frac{x - \mathrm{E}[x]} {\sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta \]- Examples: - x = torch.randn(2, 3, 4) m = torch.nn.LayerNorm(x.size()[1:]) y = m(x) - See also 
__init__¶
- LayerNorm.- __init__(
 normalized_shape,
 eps=1e-05,
 elementwise_affine=True
 )[source]¶
- Create a - LayerNormmodule.- Parameters:
- normalized_shape (Union[int, Sequence[int]]) – The size normalized over the last dimensions.
- eps (float, optional, default=1e-5) – The value to \(\epsilon\).
- elementwise_affine (bool, optional, default=True) – Trueto apply an affine transformation.
 
 
