interpolate¶
- dragon.vm.torch.nn.functional.- interpolate(
 input,
 size=None,
 scale_factor=None,
 mode='nearest',
 align_corners=False
 )[source]¶
- Resize input via interpolating neighborhoods. - Specify either - sizeor- scale_factorto compute output size:- x = torch.ones((1, 2, 3, 4)) y = F.interpolate(x, size=6) # Shape: (1, 2, 6, 6) z = F.interpolate(x, scale_factor=2) # Shape: (1, 2, 6, 8) - Set - align_cornersto determine the input coordinates in linear- mode:- # align_corners = False # Use half-pixel transformation scale = float(in_size) / float(out_size) in_coord = (out_coord + 0.5) * scale - 0.5 # align_corners = True # Use align-corners transformation scale = float(in_size - 1) / float(out_size - 1) in_coord = out_coord * scale - Parameters:
- input (dragon.vm.torch.Tensor) – The input tensor.
- size (Union[int, Sequence[int]], optional) – The output size.
- scale_factor (Union[number, Sequence[number]], optional) – The scale factor along each input dimension.
- mode ({'nearest', 'linear'}, optional) – The interpolation mode.
- align_corners (bool, optional, default=False) – Whether to align corners in linear interpolating.
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 - See also 
