extract_patches¶
- dragon.vision.- extract_patches(
 inputs,
 kernel_shape=(3, 3),
 strides=1,
 pads=0,
 dilations=1,
 padding='VALID',
 data_format='NCHW',
 **kwargs
 )[source]¶
- Extract the sliding patches from input. - If data_formatis'NCHW', excepts input shape \((N, C, D1, D2, ...)\), and output shape is \((N, C \times \prod(\text{kernel\_shape}), D1_{\text{out}}, D2_{\text{out}}, ...)\).
- If data_formatis'NHWC', excepts input shape \((N, D1, D2, ..., C)\), and output shape is \((N, D1_{\text{out}}, D2_{\text{out}}, ..., \prod(\text{kernel\_shape}) \times C)\).
- If paddingis'VALID',padscontrols the explicit padding size. Otherwise, size are computed automatically use the given method.
 - Examples: - for i in range(3): ndim = i + 1 x = dragon.ones((1, 2) + (2,) * ndim) y = dragon.vision.extract_patches(x, kernel_shape=(2,) * ndim) assert y.shape == (1, 2 * (2 ** ndim)) + (1,) * ndim - Parameters:
- inputs (dragon.Tensor) – The input tensor.
- kernel_shape (Sequence[int], optional, default=(3, 3)) – The shape of sliding window.
- strides (Union[int, Sequence[int]], optional, default=1) – The stride of sliding window.
- pads (Union[int, Sequence[int]], optional, default=0) – The zero padding size.
- dilations (Union[int, Sequence[int]], optional, default=1) – The dilated rate of sliding window.
- padding (str, optional, default='VALID') – 'VALID','SAME','SAME_UPPER'or'SAME_LOWER'.
- data_format (str, optional, default='NCHW') – 'NCHW'or'NHWC'.
 
 - Returns:
- dragon.Tensor – The output tensor. 
 
- If 
