MSELoss¶
- class dragon.vm.torch.nn.MSELoss(
 size_average=None,
 reduce=None,
 reduction='mean'
 )[source]¶
- Compute the element-wise squared error. - The - MSELossfunction is defined as:\[\text{MSELoss}(x, y) = (x - y)^{2} \]- Examples: - m = torch.nn.MSELoss() loss = m(torch.ones(2, 3) * 2, torch.zeros(2, 3)) - See also 
__init__¶
- MSELoss.- __init__(
 size_average=None,
 reduce=None,
 reduction='mean'
 )[source]¶
- Create a - MSELossmodule.- Parameters:
- size_average (bool, optional) – Trueto set thereductionto ‘mean’.
- reduce (bool, optional) – Trueto set thereductionto ‘sum’ or ‘mean’.
- reduction ({'none', 'mean', 'sum'}, optional) – The reduce method.
 
- size_average (bool, optional) – 
 
