max_pool¶
- dragon.vm.tensorflow.nn.- max_pool(
 input,
 ksize,
 strides,
 padding='VALID',
 data_format='NHWC',
 name=None
 )[source]¶
- Apply the n-dimension max pooling. - If data_formatis'NCHW', excepts input shape \((N, C, D1, D2, ...)\), and output shape is \((N, C, D1_{\text{out}}, D2_{\text{out}}, ...)\).
- If data_formatis'NHWC', excepts input shape \((N, D1, D2, ..., C)\), and output shape is \((N, D1_{\text{out}}, D2_{\text{out}}, ..., C)\).
- paddingcould be- 'VALID',- 'SAME'or explicit padding size.
 - Examples: - for i in range(3): ndim = i + 1 x = tf.ones((1,) + (2,) * ndim + (2,)) y = tf.nn.max_pool(x, ksize=(2,) * ndim, strides=2) assert y.shape == (1,) + (1,) * ndim + (2,) - Parameters:
- input (dragon.Tensor) – The input tensor.
- ksize (Union[int, Sequence[int]]) – The size of pooling window.
- strides (Union[int, Sequence[int]]) – The stride of pooling window.
- padding (Union[int, Sequence[int], str], optional, default='VALID') – The padding algorithm or size.
- data_format (str, optional, default='NHWC') – 'NCHW'or'NHWC'.
- name (str, optional) – The operation name.
 
 - Returns:
- dragon.Tensor – The output tensor. 
 
- If 
