conv_transpose¶
- dragon.vm.tensorflow.nn.- conv_transpose(
 input,
 filters,
 output_shape=None,
 strides=1,
 padding='SAME',
 output_padding=None,
 data_format='NHWC',
 dilations=1,
 name=None
 )[source]¶
- Apply the n-dimension deconvolution. - If data_formatis'NCHW', excepts input shape \((N, C_{\text{in}}, D1, D2, ...)\), filters shape \((C_{\text{in}}, C_{\text{out}}, D1_{\text{f}}, D2_{\text{f}}, ...)\), and output shape is \((N, C_{\text{out}}, D1_{\text{out}}, D2_{\text{out}}, ...)\).
- If data_formatis'NHWC', excepts input shape \((N, D1, D2, ..., C_{\text{in}})\), filters shape \((C_{\text{in}}, D1_{\text{f}}, D2_{\text{f}}, ..., C_{\text{out}})\), and output shape is \((N, D1_{\text{out}}, D2_{\text{out}}, ..., C_{\text{out}})\).
- paddingcould be- 'VALID',- 'SAME'or explicit padding size.
 - Examples: - for i in range(3): ndim = i + 1 x = tf.ones((1,) + (2,) * ndim + (2,)) filters = tf.ones((3,) + (1,) * ndim + (2,)) y = tf.nn.conv_transpose(x, filters, output_shape=(2,) * ndim) assert y.shape == (1,) + (2,) * ndim + (3,) - Parameters:
- input (dragon.Tensor) – The input tensor.
- filters (dragon.Tensor) – The filters tensor.
- output_shape (Union[Sequence[int], dragon.Tensor], optional) – The optional output shape.
- strides (Union[int, Sequence[int]], default=1) – The stride of convolution window.
- padding (Union[int, Sequence[int], str], optional) – The padding algorithm or size.
- output_padding (Union[Sequence[int], dragon.Tensor], optional) – The additional size added to the output shape.
- data_format (str, optional, default='NHWC') – 'NCHW'or'NHWC'.
- dilations (Union[int, Sequence[int]], optional, default=1) – The rate of dilated filters.
- name (str, optional) – The operation name.
 
 - Returns:
- dragon.Tensor – The output tensor. 
 
- If 
