conv2d_transpose¶
- dragon.vm.tensorflow.nn.- conv2d_transpose(
 input,
 filters,
 output_shape=None,
 strides=1,
 padding='SAME',
 output_padding=None,
 data_format='NHWC',
 dilations=None,
 name=None
 )[source]¶
- Apply the 2d deconvolution. - If data_formatis'NCHW', excepts input shape \((N, C_{\text{in}}, H, W)\), filters shape \((C_{\text{in}}, C_{\text{out}}, H_{\text{f}}, W_{\text{f}})\), and output shape is \((N, C_{\text{out}}, H_{\text{out}}, W_{\text{out}})\).
- If data_formatis'NHWC', excepts input shape \((N, H, W, C_{\text{in}})\), filters shape \((C_{\text{in}}, H_{\text{f}}, W_{\text{f}}, C_{\text{out}})\), and output shape is \((N, H_{\text{out}}, W_{\text{out}}, C_{\text{out}})\).
- paddingcould be- 'VALID',- 'SAME'or explicit padding size.
 - Examples: - x = tf.ones((1, 2, 2, 2)) filters = tf.ones((3, 1, 1, 2)) y = tf.nn.conv2d_transpose(x, filters, output_shape=(2, 2)) assert y.shape == (1, 2, 2, 3) - Parameters:
- input (dragon.Tensor) – The input tensor.
- filters (dragon.Tensor) – The filters tensor.
- output_shape (Union[Sequence[int], dragon.Tensor], optional) – The optional output shape.
- strides (Union[int, Sequence[int]], default=1) – The stride of convolution window.
- padding (Union[int, Sequence[int], str]) – The padding algorithm or size.
- output_padding (Union[Sequence[int], dragon.Tensor], optional) – The additional size added to the output shape.
- data_format (str, optional, default='NHWC') – 'NCHW'or'NHWC'.
- dilations (Union[int, Sequence[int]], optional, default=1) – The rate of dilated filters.
- name (str, optional) – The operation name.
 
 - Returns:
- dragon.Tensor – The output tensor. 
 
- If 
