channel_norm¶
- dragon.nn.- channel_norm(
 inputs,
 mean,
 std,
 axis=- 1,
 dtype='float32',
 perm=None,
 **kwargs
 )[source]¶
- Apply the normalization to each channel of input. - axiscan be negative:- m = s = (1., 1., 1.) x = dragon.constant([1, 2, 3]) print(dragon.nn.channel_norm(x, m, s, axis=0)) # [0., 1., 2.] print(dragon.nn.channel_norm(x, m, s, axis=-1)) # Equivalent - If - permprovided,- axisis selected from the output layout:- m, s = (1., 2., 3.), (1., 1., 1.) x = dragon.constant([[1, 2, 3]]) # Provided 3 values to normalize the last axis # with length 1, only the first value will be taken print(dragon.nn.channel_norm(x, m, s, perm=(1, 0))) # [[0.], [1.], [2.]] - Parameters:
- inputs (dragon.Tensor) – The input tensor.
- mean (Sequence[float], required) – The mean to subtract.
- std (Sequence[float], required) – The standard deviation to divide.
- axis (int, optional, default=-1) – The channel axis.
- dtype (str, optional, default='float32') – The output data type.
- perm (Sequence[Union[int, dragon.Tensor]], optional) – The output permutation.
 
 - Returns:
- dragon.Tensor – The output tensor. 
 
