RandomResizedCrop¶
- class dragon.vm.dali.ops.RandomResizedCrop(
 size,
 interp_type=None,
 mag_filter=None,
 min_filter=None,
 random_area=(0.08, 1.0),
 random_aspect_ratio=(0.75, 1.33),
 num_attempts=10,
 **kwargs
 )[source]¶
- Return a resized random crop of image. - Examples: - resize = dali.ops.RandomResizedCrop( size=(224, 224), # Inception sampling policy for image classification random_area=(0.08, 1.00), random_aspect_ratio=(0.75, 1.33), ) y = resize(inputs['x']) 
__new__¶
- static RandomResizedCrop.__new__(
 cls,
 size,
 interp_type=None,
 mag_filter=None,
 min_filter=None,
 random_area=(0.08, 1.0),
 random_aspect_ratio=(0.75, 1.33),
 num_attempts=10,
 **kwargs
 )[source]¶
- Create a - RandomResizedCropoperator.- Parameters:
- size (Union[int, Sequence[int]]) – The output image size.
- interp_type (str, optional) – The interpolation for both up and down sampling.
- mag_filter (str, optional, default='LINEAR') – The interpolation for up sampling.
- min_filter (str, optional, default='TRIANGULAR') – The interpolation for down sampling.
- random_area (Sequence[float], optional, default=(0.08, 1.)) – The range of scale for sampling.
- random_aspect_ratio (Sequence[float], optional, default=(0.75, 1.33)) – The range of aspect ratio for sampling.
- num_attempts (int, optional, default=10) – The max number of sampling trails.
 
 - Returns:
- nvidia.dali.ops.RandomResizedCrop – The operator. 
 
