log_softmax¶
- dragon.vm.tensorflow.nn.- log_softmax(
 logits,
 axis=- 1,
 name=None
 )[source]¶
- Apply the composite of logarithm and softmax. - The LogSoftmax function is defined as: \[\text{LogSoftmax}(x) = \log(\frac{\exp(x_{i})}{\sum \exp(x_{j})}) \]- The argument - axiscould be negative:- x = tf.random.uniform((2, 3), -0.1, 0.1) print(tf.nn.log_softmax(x, 1)) print(tf.nn.log_softmax(x, -1)) # Equivalent - Parameters:
- logits (dragon.Tensor) – The input tensor.
- axis (int, optional, default=1) – The axis to reduce.
- name (str, optional) – The operation name.
 
 - Returns:
- dragon.Tensor – The output tensor. 
 
