RMSprop¶
- class dragon.vm.tensorflow.keras.optimizers.RMSprop(
 learning_rate=0.001,
 rho=0.9,
 momentum=0.0,
 epsilon=1e-07,
 name=None,
 **kwargs
 )[source]¶
- The optimizer to apply RMSprop algorithm. [Hinton et.al, 2013]. - The RMSprop update is defined as: \[\text{RMSprop}(g) = \text{lr} * m_{t} \\ \quad \\ \text{where}\quad \begin{cases} v_{t} = \alpha * v_{t-1} + (1 - \alpha) * g^{2} \\ m_{t} = \text{momentum} * m_{t-1} + \frac{g}{\sqrt{v_{t}} + \epsilon} \end{cases} \]
__init__¶
- RMSprop.- __init__(
 learning_rate=0.001,
 rho=0.9,
 momentum=0.0,
 epsilon=1e-07,
 name=None,
 **kwargs
 )[source]¶
- Create a - RMSpropoptimizer.- Parameters:
- learning_rate (float, optional, default=0.001) – The initial value to \(\text{lr}\).
- rho (float, optional, default=0.9) – The initial value to \(\alpha\).
- momentum (float, optional, default=0) – The initial value to \(\text{momentum}\).
- epsilon (float, optional, default=1e-7) – The initial value to \(\epsilon\).
- name (str, optional) – The optional optimizer name.
 
 
Properties¶
iterations¶
- Optimizer.- iterations
- Return the number of steps has run. - Returns:
- int – The iterations.
 
Methods¶
apply_gradients¶
- Optimizer.- apply_gradients(grads_and_vars)[source]
- Apply the gradients to update variables. - Parameters:
- grads_and_vars (Sequence[Sequence[dragon.Tensor]]) – The gradients and variables.
 
 - Returns:
- dragon.vm.tensorflow.keras.optimizers.Optimizer – The self to generate the update operations. 
 
