RNN¶
- class dragon.vm.torch.nn.RNN(
 input_size,
 hidden_size,
 nonlinearity='relu',
 num_layers=1,
 bias=True,
 batch_first=False,
 dropout=0,
 bidirectional=False
 )[source]¶
- Apply a multi-layer Elman RNN. [Elman, 1990]. - Examples: - m = torch.nn.RNN(32, 64) x = torch.ones(8, 32, 256) outputs, hidden = m(x) 
__init__¶
- RNN.- __init__(
 input_size,
 hidden_size,
 nonlinearity='relu',
 num_layers=1,
 bias=True,
 batch_first=False,
 dropout=0,
 bidirectional=False
 )[source]¶
- Create a - RNNmodule.- Parameters:
- input_size (int) – The dimension of input.
- hidden_size (int) – The dimension of hidden state.
- nonlinearity ({'tanh', 'relu'}, optional) – The nonlinearity.
- num_layers (int, optional, default=1) – The number of recurrent layers.
- bias (bool, optional, default=True) – Trueto use bias.
- batch_first (bool, optional, default=False) – Trueto use order [N, T, C] otherwise [T, N, C].
- dropout (number, optional, default=0) – The dropout ratio.
- bidirectional (bool, optional, default=False) – Whether to create a bidirectional rnn.
 
 
