BinaryCrossentropy¶
- class dragon.vm.tensorflow.keras.losses.BinaryCrossentropy(
 reduction='mean',
 name=None
 )[source]¶
- A criterion to compute the binary cross entropy with contiguous targets. - The CrossEntropy function is defined as: \[\text{CrossEntropy}(p_{t}) = -\log(p_{t}) \]- Examples: - criterion = tf.keras.cost.BinaryCrossentropy() y_true = tf.constant([0., 0., 1., 1.]) y_pred = tf.constant([0.1, 0.2, 0.3, 0.4]) print(criterion(y_true, y_pred)) # 0.65247655 
__init__¶
Methods¶
__call__¶
- Loss.- __call__(
 y_true,
 y_pred
 )[source]
- Compute the defined loss function. - Parameters:
- y_true (dragon.Tensor) – The ground-truth tensor.
- y_pred (dragon.Tensor) – The logits tensor.
 
 - Returns:
- dragon.Tensor – The loss. 
 
