local_response_norm¶
- dragon.nn.- local_response_norm(
 inputs,
 size=5,
 alpha=0.0001,
 beta=0.75,
 bias=1.0,
 data_format='NCHW',
 **kwargs
 )[source]¶
- Apply the local response normalization. [Krizhevsky et.al, 2012]. - The normalization is defined as: \[y_{i} = x_{i}\left(k + \frac{\alpha}{n} \sum_{j=\max(0, i-n/2)}^{\min(N-1,i+n/2)}x_{j}^2 \right)^{-\beta} \]- Parameters:
- inputs (dragon.Tensor) – The input tensor.
- size (int, optional, default=5) – The number of neighbouring channels to sum over.
- alpha (float, optional, default=0.0001) – The scale value \(\alpha\).
- beta (float, optional, default=0.75) – The exponent value \(\beta\).
- bias (float, optional, default=1.) – The bias constant \(k\).
- data_format (str, optional, default='NCHW') – 'NCHW'or'NHWC'.
 
 - Returns:
- dragon.Tensor – The output tensor. 
 
