Normalize¶
- class dragon.vm.dali.ops.Normalize(
 axes=(0, 1),
 mean=None,
 stddev=None,
 scale=1.0,
 shift=0.0,
 batch=False,
 epsilon=0,
 dtype='float32',
 **kwargs
 )[source]¶
- Normalize input. - Examples: - norm = dali.ops.Normalize( # Batch normalization case of HWC layout axes=(0, 1), batch=True, epsilon=1e-5, ) y = norm(inputs['x']) 
__new__¶
- static Normalize.__new__(
 cls,
 axes=(0, 1),
 mean=None,
 stddev=None,
 scale=1.0,
 shift=0.0,
 batch=False,
 epsilon=0,
 dtype='float32',
 **kwargs
 )[source]¶
- Create a - Normalizeoperator.- Parameters:
- axes (Sequence[int], optional) – The axes to normalize.
- mean (float, optional) – The value to subtract.
- stddev (float, optional) – The value to divide after subtraction.
- scale (float, optional, default=1.0) – The scale factor after normalization.
- shift (float, optional, default=0.0) – The shift factor after normalization.
- batch (bool, optional, default=False) – Whether to compute mean and stddev across the batch.
- epsilon (float, optional, default=0) – The value added to the computed variance.
- dtype (str, optional, default='float32') – The output data type.
 
 - Returns:
- nvidia.dali.ops.Normalize – The operator. 
 
