smooth_l1_loss¶
- dragon.losses.- smooth_l1_loss(
 inputs,
 beta=1.0,
 reduction='mean',
 **kwargs
 )[source]¶
- Compute the loss of element-wise error transited from L1 and L2. [Girshick, 2015]. - The SmoothL1Loss function is defined as: \[\text{SmoothL1Loss}(x, y) = \begin{cases} 0.5 * (x - y)^{2} / beta, & \text{ if } |x - y| < beta \\ |x - y| - 0.5 * beta, & \text{ otherwise } \end{cases} \]- Examples: - x = dragon.constant([1., 2., 3.]) y = dragon.constant([0., 0., 0.]) print(dragon.losses.smooth_l1_loss([x, y])) # 1.5 - Parameters:
- inputs (Sequence[dragon.Tensor]) – The tensor inputandtarget.
- beta (float, optional, default=1.0) – The transition point from L1 to L2 loss
- reduction ({'none', 'sum', 'mean'}, optional) – The reduction method.
 
- inputs (Sequence[dragon.Tensor]) – The tensor 
 - Returns:
- dragon.Tensor – The output tensor. 
 
