conv_transpose¶
- dragon.nn.- conv_transpose(
 inputs,
 kernel_shape=(3, 3),
 strides=1,
 pads=0,
 dilations=1,
 group=1,
 padding='VALID',
 output_padding=None,
 output_shape=None,
 data_format='NCHW',
 **kwargs
 )[source]¶
- Apply the n-dimension deconvolution. - If data_formatis'NCHW', excepts input shape \((N, C_{\text{in}}, D1, D2, ...)\), weight shape \((C_{\text{in}}, C_{\text{out}}, D1_{\text{k}}, D2_{\text{k}}, ...)\), and output shape is \((N, C_{\text{out}}, D1_{\text{out}}, D2_{\text{out}}, ...)\).
- If data_formatis'NHWC', excepts input shape \((N, D1, D2, ..., C_{\text{in}})\), weight shape \((C_{\text{in}}, D1_{\text{k}}, D2_{\text{k}}, ..., C_{\text{out}})\), and output shape is \((N, D1_{\text{out}}, D2_{\text{out}}, ..., C_{\text{out}})\).
- If paddingis'VALID',padscontrols the explicit padding size. Otherwise, size are computed automatically use the given method.
 - Examples: - for i in range(3): ndim = i + 1 x = dragon.ones((1, 2) + (2,) * ndim) w = dragon.ones((3, 2) + (1,) * ndim) y = dragon.nn.conv_transpose( [x, w], kernel_shape=(1,) * ndim, output_shape=(3,) * ndim, output_padding=(1,) * ndim) assert y.shape == (1, 3) + (3,) * ndim - Parameters:
- inputs (Sequence[dragon.Tensor]) – The tensor x,weightand optionalbias.
- kernel_shape (Sequence[int], optional, default=(3, 3)) – The shape of convolution window.
- strides (Union[int, Sequence[int]], optional, default=1) – The stride of convolution window.
- pads (Union[int, Sequence[int]], optional, default=0) – The zero padding size.
- dilations (Union[int, Sequence[int]], optional, default=1) – The rate of dilated convolution.
- group (int, optional, default=1) – The number of groups to split channels into.
- padding (str, optional, default='VALID') – 'VALID','SAME','SAME_UPPER'or'SAME_LOWER'.
- output_padding (Union[Sequence[int], dragon.Tensor], optional) – The additional size added to the output shape.
- output_shape (Union[Sequence[int], dragon.Tensor], optional) – The output shape for automatic padding.
- data_format (str, optional, default='NCHW') – 'NCHW'or'NHWC'.
 
- inputs (Sequence[dragon.Tensor]) – The tensor 
 - Returns:
- dragon.Tensor – The output tensor. 
 
- If 
