Affine¶
- class dragon.vm.torch.nn.Affine(
 num_features,
 bias=True,
 fix_weight=False,
 fix_bias=False,
 inplace=False
 )[source]¶
- Apply affine transformation. - Affine is often taken as a post-processing of normalization. - Examples: - m = torch.nn.Affine(5) # Apply a 2d transformation x2d = torch.ones(3, 5) y2d = m(x2d) # Apply a 3d transformation x3d = torch.ones(3, 5, 4) y3d = m(x3d) # Apply a 4d transformation x4d = torch.ones(3, 5, 2, 2) y4d = m(x4d) - See also 
__init__¶
- Affine.- __init__(
 num_features,
 bias=True,
 fix_weight=False,
 fix_bias=False,
 inplace=False
 )[source]¶
- Create an - AffineChannelmodule.- Parameters:
- num_features (int) – The number of channels.
- bias (bool, optional, default=True) – Trueto attach a bias.
- fix_weight (bool, optional, default=False) – Trueto freeze theweight.
- fix_bias (bool, optional, default=False) – Trueto freeze thebias.
- inplace (bool, optional, default=False) – Whether to do the operation in-place.
 
 
