softmax_cross_entropy_with_logits¶
- dragon.vm.tensorflow.nn.- softmax_cross_entropy_with_logits(
 labels,
 logits,
 name=None
 )[source]¶
- Compute the loss of softmax cross entropy. - Examples: - labels = tf.constant([[0., 1., ], [1., 0.]], dtype=tf.float32) logits = tf.constant([[0.5, 0.5], [0.3, 0.7]], dtype=tf.float32) print(tf.nn.softmax_cross_entropy_with_logits(labels, logits)) # [0.6931472, 0.9130153] - Parameters:
- labels (dragon.Tensor) – The label tensor.
- logits (dragon.Tensor) – The logit tensor.
- name (str, optional) – The operation name.
 
 - Returns:
- dragon.Tensor – The output tensor. 
 
