l2_loss¶
- dragon.losses.- l2_loss(
 inputs,
 reduction='mean',
 **kwargs
 )[source]¶
- Compute the loss of element-wise squared error. - The L2Loss function is defined as: \[\text{L2Loss}(x, y) = (x - y)^{2} \]- Examples: - x = dragon.constant([1., 2., 3.]) y = dragon.constant([0., 0., 0.]) print(dragon.losses.l2_loss([x, y])) # 4.666666 - Parameters:
- inputs (Sequence[dragon.Tensor]) – The tensor inputandtarget.
- reduction ({'none', 'sum', 'mean'}, optional) – The reduction method.
 
- inputs (Sequence[dragon.Tensor]) – The tensor 
 - Returns:
- dragon.Tensor – The output tensor. 
 
