lp_norm¶
- dragon.nn.- lp_norm(
 inputs,
 axis=- 1,
 end_axis=None,
 p=2,
 epsilon=1e-12,
 reduction='sum',
 **kwargs
 )[source]¶
- Apply the lp normalization. - The normalization is defined as: \[y = \frac{x}{\max(\left\|x\right\|_{p}, \epsilon)} \]- axiscould be negative:- x = dragon.constant([[1, 2, 3], [4, 5, 6]], 'float32') # A negative axis is the last-k axis print(dragon.nn.lp_norm(x, 1)) print(dragon.nn.lp_norm(x, -1)) # Equivalent - More than one axis could be specified to reduce: - # Along the continuous axes: [axis, end_axis] print(dragon.nn.lp_norm(x, axis=0, end_axis=1)) - Parameters:
- inputs (dragon.Tensor) – The tensor \(x\).
- p (int, optional, default=2) – The order of the normalization.
- axis (int, optional, default=-1) – The first axis to reduce.
- end_axis (int, optional) – The last axis to reduce.
- epsilon (float, optional, default=1e-12) – The value to \(\epsilon\).
- reduction ({'sum', 'mean'}, optional) – The reduction method for norm.
 
 - Returns:
- dragon.Tensor – The output tensor. 
 
