sparse_categorical_crossentropy¶
- dragon.vm.tensorflow.keras.losses.- sparse_categorical_crossentropy(
 y_true,
 y_pred,
 axis=- 1,
 ignore_index=None,
 reduction='valid'
 )[source]¶
- Compute the categorical cross entropy with sparse labels. - The CrossEntropy function is defined as: \[\text{CrossEntropy}(p_{t}) = -\log(p_{t}) \]- Examples: - y_true = tf.constant([1, 0], 'int64') y_pred = tf.constant([[0.5, 0.5], [0.3, 0.7]]) print(tf.keras.cost.sparse_categorical_crossentropy(y_true, y_pred)) # 0.8030813 - Parameters:
- y_true (dragon.Tensor) – The ground truth tensor.
- y_pred (dragon.Tensor) – The logits tensor.
- axis (int, optional, default=-1) – The reduction axis.
- ignore_index (int, optional) – The ignored value of target.
- reduction ({'none', 'sum', 'mean', 'valid'}, optional) – The reduction method.
 
 - Returns:
- dragon.Tensor – The loss. 
 
