roi_align¶
- dragon.vision.- roi_align(
 inputs,
 pooled_h,
 pooled_w,
 spatial_scale=1.0,
 sampling_ratio=- 1,
 aligned=False,
 **kwargs
 )[source]¶
- Apply the average roi align. [He et.al, 2017]. - The input - roisshould be packed with the shape \((N, 5)\), where \(N\) is the number of RoIs, and each column takes \(5\) values for a sequence of \([i_{\text{batch}}, x_{\min}, y_{\min}, x_{\max}, y_{\max}]\).- Examples: - x = dragon.range(18, dtype='float32').reshape((1, 2, 3, 3)) rois = dragon.constant([[0., 1., 1., 2.]], dtype='float32') print(dragon.vision.roi_align([x, rois], pooled_h=1, pooled_w=1)) - Parameters:
- inputs (Sequence[dragon.Tensor]) – The tensor xandrois.
- pooled_h (int, required) – The output height.
- pooled_w (int, required) – The output width.
- spatial_scale (float, optional, default=1.0) – The input scale to the size of rois.
- sampling_ratio (int, optional, default=-1) – The number of sampling grids for rois.
- aligned (bool, optional, default=False) – Whether to shift the input coordinates by -0.5.
 
- inputs (Sequence[dragon.Tensor]) – The tensor 
 - Returns:
- dragon.Tensor – The output tensor. 
 
