DepthwiseConv2d¶
- class dragon.vm.torch.nn.DepthwiseConv2d(
 in_channels,
 out_channels,
 kernel_size,
 stride=1,
 padding=0,
 dilation=1,
 bias=True
 )[source]¶
- Apply the 2d depthwise convolution. - Examples: - m = torch.nn.DepthwiseConv2d(3, 3, 3, padding=1) x = torch.ones(2, 3, 4, 4) y = m(x) 
__init__¶
- DepthwiseConv2d.- __init__(
 in_channels,
 out_channels,
 kernel_size,
 stride=1,
 padding=0,
 dilation=1,
 bias=True
 )[source]¶
- Create a - DepthwiseConv2dmodule.- Parameters:
- in_channels (int) – The number of input channels.
- out_channels (int) – The number of output channels.
- kernel_size (Union[int, Sequence[int]]) – The size of convolution window.
- stride (Union[int, Sequence[int]], optional, default=1) – The stride of convolution window.
- padding (Union[int, Sequence[int]], optional, default=0) – The zero padding size.
- dilation (Union[int, Sequence[int]], optional, default=1) – The rate of dilated kernel.
- bias (bool, optional, default=True) – Add a bias tensor to output or not.
 
 
