avg_pool3d¶
- dragon.vm.tensorflow.nn.- avg_pool3d(
 input,
 ksize,
 strides,
 padding='VALID',
 data_format='NHWC',
 name=None
 )[source]¶
- Apply the 3d average pooling. - If data_formatis'NCHW', excepts input shape \((N, C, D, H, W)\), and output shape is \((N, C, D_{\text{out}}, H_{\text{out}}, W_{\text{out}})\).
- If data_formatis'NHWC', excepts input shape \((N, D, H, W, C)\), and output shape is \((N, D_{\text{out}}, H_{\text{out}}, W_{\text{out}}, C)\).
- paddingcould be- 'VALID',- 'SAME'or explicit padding size.
 - Examples: - x = tf.ones((1, 2, 2, 2, 2)) y = tf.nn.avg_pool3d(x, ksize=2, strides=2) assert y.shape == (1, 1, 1, 1, 2) - Parameters:
- input (dragon.Tensor) – The input tensor.
- ksize (Union[int, Sequence[int]]) – The size of pooling window.
- strides (Union[int, Sequence[int]]) – The stride of pooling window.
- padding (Union[int, Sequence[int], str], optional, default='VALID') – The padding algorithm or size.
- data_format (str, optional, default='NHWC') – 'NCHW'or'NHWC'.
- name (str, optional) – The operation name.
 
 - Returns:
- dragon.Tensor – The output tensor. 
 
- If 
