group_norm¶
- dragon.nn.- group_norm(
 inputs,
 axis=- 1,
 group=0,
 epsilon=1e-05,
 **kwargs
 )[source]¶
- Apply the group normalization. [Wu & He, 2018]. - The normalization is defined as: \[y = \frac{x - \mathrm{E}[x]} {\sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta \]- groupcould be zero to apply the instance normalization:- gamma, beta = dragon.ones((3,)), dragon.zeros((3,)) x = dragon.constant([[1., 2., 3.], [4., 5., 6.]], dtype=gamma.dtype) y = dragon.nn.group_norm([x, gamma, beta], group=0) print(y) # [[0., 0., 0.], [0., 0., 0.]] - Parameters:
- inputs (Sequence[dragon.Tensor]) – The tensor x,gammaandbeta.
- axis (int, optional, default=-1) – The channel axis.
- group (int, optional, default=0) – The group size.
- epsilon (float, optional, default=1e-5) – The value to \(\epsilon\).
 
- inputs (Sequence[dragon.Tensor]) – The tensor 
 - Returns:
- dragon.Tensor – The output tensor. 
 
