local_response_norm¶
- dragon.vm.torch.nn.functional.- local_response_norm(
 input,
 size,
 alpha=0.0001,
 beta=0.75,
 k=1.0
 )[source]¶
- Apply the local response normalization to input. [Krizhevsky et.al, 2012]. - The normalization is defined as: \[y_{i} = x_{i}\left(k + \frac{\alpha}{n} \sum_{j=\max(0, i-n/2)}^{\min(N-1,i+n/2)}x_{j}^2 \right)^{-\beta} \]- Parameters:
- input (dragon.vm.torch.Tensor) – The input.
- size (int, required) – The number of neighbouring channels to sum over.
- alpha (float, optional, default=0.0001) – The scale value \(\alpha\).
- beta (float, optional, default=0.75) – The exponent value \(\beta\).
- k (float, optional, default=1.) – The bias constant \(k\).
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 - See also 
