Upsample¶
- class dragon.vm.torch.nn.Upsample(
 size=None,
 scale_factor=None,
 mode='nearest',
 align_corners=False
 )[source]¶
- Upsample input via interpolating neighborhoods. - Set - sizeor- scale_factorto determine the output size:- x = torch.ones((1, 2, 3, 4)) y = torch.nn.Upsample(size=6)(x) # Size: (1, 2, 6, 6) z = torch.nn.UpSample(scale_factor=2)(x) # Size: (1, 2, 6, 8) - The interpolating method can be set by - mode:- upsample_nn = torch.nn.Upsample(mode='nearest') upsample_linear = torch.nn.UpSample(mode='linear') - See also 
__init__¶
- Upsample.- __init__(
 size=None,
 scale_factor=None,
 mode='nearest',
 align_corners=False
 )[source]¶
- Create an - Upsamplemodule.- Parameters:
- size (Union[int, Sequence[int]], optional) – The output size.
- scale_factor (Union[number, Sequence[number]], optional) – The scale factor along each input dimension.
- mode (str, optional, default='nearest') – 'nearest'or'linear'.
- align_corners (bool, optional, default=False) – Whether to align corners in 'linear'interpolating.
 
 
