Unfold¶
- class dragon.vm.torch.nn.Unfold(
 kernel_size,
 dilation=1,
 padding=0,
 stride=1
 )[source]¶
- Extract the sliding blocks. - This module excepts the input size \((N, C, D1, D2, ...)\), and output size is \((N, C \times \prod(\text{kernel\_size}), L)\), where \(N\) is the batch size, \(C\) is the number of channels, \(L\) is \(\prod(D_{\text{out}})\). - Examples: - m = torch.nn.Unfold(3, padding=1) x = torch.ones(2, 2, 2, 2) y = m(x) - See also 
__init__¶
- Unfold.- __init__(
 kernel_size,
 dilation=1,
 padding=0,
 stride=1
 )[source]¶
- Create a - Unfoldmodule.- Parameters:
- kernel_size (Union[int, Sequence[int]]) – The size of sliding window.
- dilation (Union[int, Sequence[int]], optional, default=1) – The dilated rate of sliding convolution.
- stride (Union[int, Sequence[int]], optional, default=1) – The stride of sliding window.
- padding (Union[int, Sequence[int]], optional, default=0) – The zero padding size.
 
 
