SmoothL1Loss¶
- class dragon.vm.torch.nn.SmoothL1Loss(
 beta=1.0,
 size_average=None,
 reduce=None,
 reduction='mean'
 )[source]¶
- Compute the element-wise error transited from L1 and L2. [Girshick, 2015]. - The SmoothL1Loss function is defined as: \[\text{SmoothL1Loss}(x, y) = \begin{cases} 0.5 * (x - y)^{2} / beta, & \text{ if } |x - y| < beta \\ |x - y| - 0.5 * beta, & \text{ otherwise } \end{cases} \]- Examples: - m = torch.nn.SmoothL1Loss(beta=0.11) loss = m(torch.ones(2, 3), torch.zeros(2, 3)) 
__init__¶
- SmoothL1Loss.- __init__(
 beta=1.0,
 size_average=None,
 reduce=None,
 reduction='mean'
 )[source]¶
- Create a - SmoothL1Lossmodule.- Parameters:
- beta (float, optional, default=1.) – The transition point from L1 to L2 loss
- size_average (bool, optional) – Trueto set thereductionto ‘mean’.
- reduce (bool, optional) – Trueto set thereductionto ‘sum’ or ‘mean’.
- reduction ({'none', 'mean', 'sum'}, optional) – The reduce method.
 
 
