SigmoidFocalLoss¶
- class dragon.vm.torch.nn.SigmoidFocalLoss(
 alpha=0.25,
 gamma=2.0,
 weight=None,
 size_average=None,
 start_index=0,
 reduce=None,
 reduction='mean'
 )[source]¶
- Compute the sigmoid focal loss. [Lin et.al, 2017]. - The FocalLoss function is defined as: \[\text{FocalLoss}(p_{t}) = -(1 - p_{t})^{\gamma}\log(p_{t}) \]- Examples: - m = torch.nn.SigmoidFocalLoss() logits = torch.randn(2, 2) targets = torch.tensor([0, 1]) loss = m(logits, targets) 
__init__¶
- SigmoidFocalLoss.- __init__(
 alpha=0.25,
 gamma=2.0,
 weight=None,
 size_average=None,
 start_index=0,
 reduce=None,
 reduction='mean'
 )[source]¶
- Create a - SigmoidFocalLossmodule.- Parameters:
- alpha (float, optional, default=0.25) – The scale factor on the rare class.
- gamma (float, optional, default=2.) – The exponential decay factor on the easy examples.
- weight (dragon.vm.torch.Tensor, optional) – The weight for each class.
- size_average (bool, optional) – Trueto set thereductionto ‘mean’.
- start_index (int, optional, default=0) – The start value of target.
- reduce (bool, optional) – Trueto set thereductionto ‘sum’ or ‘mean’.
- reduction ({'none', 'mean', 'sum', 'valid'}, optional) – The reduce method.
 
 
