MaxPool1d¶
- class dragon.vm.torch.nn.MaxPool1d(
 kernel_size,
 stride=1,
 padding=0,
 ceil_mode=False
 )[source]¶
- Apply the 1d max pooling. - This module excepts the input size \((N, C, H)\), and output size is \((N, C, H_{\text{out}})\), where \(N\) is the batch size, \(C\) is the number of channels, \(H\) is the height of data. - Examples: - m = torch.nn.MaxPool1d(2, 2) x = torch.ones(2, 2, 2) y = m(x) - See also 
__init__¶
- MaxPool1d.- __init__(
 kernel_size,
 stride=1,
 padding=0,
 ceil_mode=False
 )[source]¶
- Create a - MaxPool1dmodule.- Parameters:
- kernel_size (Union[int, Sequence[int]]) – The size of pooling window.
- stride (Union[int, Sequence[int]], optional, default=1) – The stride of pooling window.
- padding (Union[int, Sequence[int]], optional, default=0) – The zero padding size.
- ceil_mode (bool, optional, default=False) – Ceil or floor the boundary.
 
 
