GroupNorm¶
- class dragon.vm.torch.nn.GroupNorm(
 num_groups,
 num_channels,
 eps=1e-05,
 affine=True
 )[source]¶
- Apply the group normalization. [Wu & He, 2018]. - The normalization is defined as: \[y = \frac{x - \mathrm{E}[x]} {\sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta \]- Examples: - m = torch.nn.GroupNorm(num_groups=2, num_channels=4) x = torch.randn(2, 4) y = m(x) - See also 
__init__¶
- GroupNorm.- __init__(
 num_groups,
 num_channels,
 eps=1e-05,
 affine=True
 )[source]¶
- Create a - GroupNormmodule.- Parameters:
- num_groups (int) – The number of groups.
- num_channels (int) – The number of channels.
- eps (float, optional, default=1e-5) – The value to \(\epsilon\).
- affine (bool, optional, default=True) – Trueto apply an affine transformation.
 
 
