Conv3d¶
- class dragon.vm.torch.nn.Conv3d(
 in_channels,
 out_channels,
 kernel_size,
 stride=1,
 padding=0,
 dilation=1,
 groups=1,
 bias=True
 )[source]¶
- Apply the 3d convolution. - This module excepts the input size \((N, C_{\text{in}}, D, H, W)\), and output size is \((N, C_{\text{out}}, D_{\text{out}}, H_{\text{out}}, W_{\text{out}})\), where \(N\) is the batch size, \(C\) is the number of channels, \(D\), \(H\) and \(W\) are the depth, height and width of data. - Examples: - m = torch.nn.Conv3d(2, 3, 3, padding=1) x = torch.ones(2, 2, 2, 2, 2) y = m(x) - See also 
__init__¶
- Conv3d.- __init__(
 in_channels,
 out_channels,
 kernel_size,
 stride=1,
 padding=0,
 dilation=1,
 groups=1,
 bias=True
 )[source]¶
- Create a - Conv3dmodule.- Parameters:
- in_channels (int) – The number of input channels.
- out_channels (int) – The number of output channels.
- kernel_size (Union[int, Sequence[int]]) – The size of convolution window.
- stride (Union[int, Sequence[int]], optional, default=1) – The stride of convolution window.
- padding (Union[int, Sequence[int]], optional, default=0) – The zero padding size.
- dilation (Union[int, Sequence[int]], optional, default=1) – The rate of dilated convolution.
- groups (int, optional, default=1) – The number of groups to split channels into.
- bias (bool, optional, default=True) – Add a bias tensor to output or not.
 
 
