Tensor¶
- class dragon.vm.torch.Tensor(
 *args,
 **kwargs
 )[source]¶
- A multi-dimensional array containing elements of a single data type. - To create a tensor from constant value, use - torch.tensor(...):- # Create a constant tensor # The value is 1, dimensions is (0,) const_tensor = torch.tensor(1, dtype=torch.float32) - Besides, following initializers can also be used: - # Create an empty float32 tensor # The dimensions is (1, 2) empty_tensor = torch.empty(1, 2, dtype=torch.float32) # Create a float32 tensor filling ``one`` or ``zero`` ones = torch.ones(1, 2, dtype=torch.float32) zeros = torch.zeros(1, 2, dtype=torch.float32) - Construct a tensor with device and grad will sometimes be helpful: - # Initialize a weight and bias on the gpu:0, whose gradient should not be ignored weight = torch.ones(1, 2, device=torch.device('cuda', 0), requires_grad=True) bias = torch.tensor(0, device=torch.device('cuda', 0), requires_grad=True) - Be careful to store a tensor object, or the memory will not be free: - # The memory of ``my_tensor`` will be held # until the reference count decrease to zero my_object.tensors = [] my_object.tensors.append(my_tensor) 
Properties¶
data¶
- Tensor.- data¶
- Return a data reference detaching the grad. - Returns:
- dragon.vm.torch.Tensor – The data tensor.
 
device¶
- Tensor.- device¶
- Return the device of this tensor. - Returns:
- dragon.vm.torch.device – The device.
 
grad¶
- Tensor.- grad¶
- Return the grad of this tensor. - Returns:
- dragon.vm.torch.Tensor – The grad tensor.
 
is_leaf¶
- Tensor.- is_leaf¶
- Return whether tensor is a leaf. - Returns:
- bool – Trueif this is a leaf tensor otherwiseFalse.
 
Methods¶
abs¶
add¶
- Tensor.- add(other)[source]¶
- Compute the element-wise addition. \[\text{out} = \text{self} + \text{other} \]- Parameters:
- other (Union[dragon.vm.torch.Tensor, number]) – The value to add.
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 - See also 
add_¶
- Tensor.- add_(other)[source]¶
- Compute the element-wise addition. \[\text{self} \mathrel{+}= \text{other} \]- Parameters:
- other (Union[dragon.vm.torch.Tensor, number]) – The value to add.
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 - See also 
addmm¶
- Tensor.- addmm(
 mat1,
 mat2,
 beta=1,
 alpha=1
 )[source]¶
- Add the result of matrix-matrix multiplication. \[\text{out} = \alpha (\text{mat1} \times \text{mat2}) + \beta \text{self} \]- Parameters:
- mat1 (dragon.vm.torch.Tensor) – The first matrix.
- mat2 (dragon.vm.torch.Tensor) – The second matrix.
- beta (float, optional, default=1) – The value to \(\beta\).
- alpha (float, optional, default=1) – The value to \(\alpha\).
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 - See also 
argmax¶
argmin¶
argsort¶
- Tensor.- argsort(
 dim=- 1,
 descending=False
 )[source]¶
- Return the index of sorted elements. - Parameters:
- dim (int, optional, default=-1) – The dimension to sort elements.
- descending (bool, optional, default=False) – Sort in the descending order or not.
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 - See also 
atan2¶
- Tensor.- atan2(other)[source]¶
- Compute the element-wise arc-tangent of two arguments. \[\text{out} = \text{arctan}(\frac{\text{self}}{\text{other}}) \]- Parameters:
- other (Union[dragon.vm.torch.Tensor, number]) – The value to divide.
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 - See also 
backward¶
- Tensor.- backward(
 gradient=None,
 retain_graph=False
 )[source]¶
- Compute the derivatives of this tensor w.r.t. graph leaves. - Parameters:
- gradient (dragon.vm.torch.Tensor, optional) – The optional gradient of this tensor.
- retain_graph (bool, optional, default=False) – Falseto free the graph used to compute grad.
 
 
baddbmm¶
- Tensor.- baddbmm(
 batch1,
 batch2,
 beta=1,
 alpha=1
 )[source]¶
- Add the result of batched matrix-matrix multiplication. \[\text{out}_{i} = \alpha (\text{batch1}_{i} \times \text{batch2}_{i}) + \beta \text{self}_{i} \]- Parameters:
- batch1 (dragon.vm.torch.Tensor) – The first batch of matrices.
- batch2 (dragon.vm.torch.Tensor) – The second batch of matrices.
- beta (float, optional, default=1) – The value to \(\beta\).
- alpha (float, optional, default=1) – The value to \(\alpha\).
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 - See also 
baddbmm_¶
- Tensor.- baddbmm_(
 batch1,
 batch2,
 beta=1,
 alpha=1
 )[source]¶
- Add the result of batched matrix-matrix multiplication. \[\text{self}_{i} = \alpha (\text{batch1}_{i} \times \text{batch2}_{i}) + \beta \text{self}_{i} \]- Parameters:
- batch1 (dragon.vm.torch.Tensor) – The first batch of matrices.
- batch2 (dragon.vm.torch.Tensor) – The second batch of matrices.
- beta (float, optional, default=1) – The value to \(\beta\).
- alpha (float, optional, default=1) – The value to \(\alpha\).
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 - See also 
bitwise_and¶
- Tensor.- bitwise_and(other)[source]¶
- Compute the element-wise AND bitwise operation. \[\text{out} = \text{self} \mathbin{\&} \text{other} \]- Parameters:
- other (Union[dragon.vm.torch.Tensor, number]) – The value to compute with.
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 - See also 
bitwise_and_¶
- Tensor.- bitwise_and_(other)[source]¶
- Compute the element-wise AND bitwise operation. \[\text{self} = \text{self} \mathbin{\&} \text{other} \]- Parameters:
- other (Union[dragon.vm.torch.Tensor, number]) – The value to compute with.
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 - See also 
bitwise_not¶
bitwise_not_¶
bitwise_or¶
- Tensor.- bitwise_or(other)[source]¶
- Compute the element-wise OR bitwise operation. \[\text{out} = \text{self} \mathbin{|} \text{other} \]- Parameters:
- other (Union[dragon.vm.torch.Tensor, number]) – The value to compute with.
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 - See also 
bitwise_or_¶
- Tensor.- bitwise_or_(other)[source]¶
- Compute the element-wise OR bitwise operation. \[\text{self} = \text{self} \mathbin{|} \text{other} \]- Parameters:
- other (Union[dragon.vm.torch.Tensor, number]) – The value to compute with.
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 - See also 
bitwise_xor¶
- Tensor.- bitwise_xor(other)[source]¶
- Compute the element-wise XOR bitwise operation. \[\text{out} = \text{self} \oplus \text{other} \]- Parameters:
- other (Union[dragon.vm.torch.Tensor, number]) – The value to compute with.
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 - See also 
bitwise_xor_¶
- Tensor.- bitwise_xor_(other)[source]¶
- Compute the element-wise XOR bitwise operation. \[\text{self} = \text{self} \oplus \text{other} \]- Parameters:
- other (Union[dragon.vm.torch.Tensor, number]) – The value to compute with.
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 - See also 
bmm¶
- Tensor.- bmm(batch2)[source]¶
- Compute the batched matrix multiplication. \[\text{out}_{i} = \text{self}_{i} \times \text{batch2}_{i} \]- Parameters:
- batch2 (dragon.vm.torch.Tensor) – The second batch of matrices.
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 - See also 
bool¶
bool_¶
byte¶
byte_¶
ceil¶
ceil_¶
char¶
char_¶
chunk¶
- Tensor.- chunk(
 chunks,
 dim=0,
 copy=True
 )[source]¶
- Split self into several parts along the given dim. - Parameters:
- chunks (int) – The number of chunks to split.
- dim (int, optional, default=0) – The dimension to split.
- copy (bool, optional, default=True) – Copy or create the views of input.
 
 - Returns:
- Sequence[dragon.vm.torch.Tensor] – The output chunks. 
 
clamp¶
clamp_¶
contiguous¶
copy_¶
- Tensor.- copy_(src)[source]¶
- Copy the elements into this tensor. - Parameters:
- src (dragon.vm.torch.Tensor) – The tensor to copy from.
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 
cos¶
cpu¶
cuda¶
- Tensor.- cuda(device=None)[source]¶
- Copy memory to the specified cuda device. - Parameters:
- device (Union[int, dragon.vm.torch.device], optional) – The device to copy to.
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 
cumsum¶
detach¶
div¶
- Tensor.- div(other)[source]¶
- Compute the element-wise division. \[\text{out} = \text{self} \div \text{other} \]- Parameters:
- other (Union[dragon.vm.torch.Tensor, number]) – The value to divide.
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 - See also 
div_¶
- Tensor.- div_(other)[source]¶
- Compute the element-wise division. \[\text{self} \mathrel{\div}= \text{other} \]- Parameters:
- other (Union[dragon.vm.torch.Tensor, number]) – The value to be divided.
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 - See also 
double¶
double_¶
eq¶
- Tensor.- eq(other)[source]¶
- Compute the element-wise equal comparison. \[\text{out} = (\text{self} = \text{other}) \]- Parameters:
- other (Union[dragon.vm.torch.Tensor, number]) – The value to compare.
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 - See also 
exp¶
exp_¶
expand¶
expand_as¶
- Tensor.- expand_as(other)[source]¶
- Return a tensor with elements broadcast like the other. - Parameters:
- other (dragon.vm.torch.Tensor) – The tensor provided the output dimensions.
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 
fill_¶
flatten¶
- Tensor.- flatten(
 start_dim=0,
 end_dim=- 1
 )[source]¶
- Return a tensor with dimensions flattened. - Parameters:
- start_dim (int, optional, default=0) – The start dimension to flatten.
- end_dim (int, optional, default=-1) – The end dimension to flatten.
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 - See also 
flatten_¶
flip¶
fliplr¶
flipud¶
float¶
float_¶
floor¶
floor_¶
gather¶
- Tensor.- gather(
 dim,
 index
 )[source]¶
- Gather elements along the given dimension of index. - Parameters:
- dim (int) – The dimension of index values.
- index (dragon.vm.torch.Tensor) – The index tensor.
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 - See also 
ge¶
- Tensor.- ge(other)[source]¶
- Compute the element-wise greater-equal comparison. \[\text{out} = (\text{self} \geq \text{other}) \]- Parameters:
- other (Union[dragon.vm.torch.Tensor, number]) – The value to compare.
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 - See also 
gt¶
- Tensor.- gt(other)[source]¶
- Compute the element-wise greater comparison. \[\text{out} = (\text{self} > \text{other}) \]- Parameters:
- other (Union[dragon.vm.torch.Tensor, number]) – The value to compare.
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 - See also 
half¶
half_¶
index_select¶
- Tensor.- index_select(
 dim,
 index
 )[source]¶
- Select the elements along the dim using index. - Parameters:
- dim (Union[int, Sequence[int]]) – The dim(s) to select.
- index (dragon.vm.torch.Tensor) – The index.
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 
int¶
int_¶
isfinite¶
isinf¶
isnan¶
is_contiguous¶
is_floating_point¶
le¶
- Tensor.- le(other)[source]¶
- Compute the element-wise less-equal comparison. \[\text{out} = (\text{self} \leq \text{other}) \]- Parameters:
- other (Union[dragon.vm.torch.Tensor, number]) – The value to compare.
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 - See also 
log¶
log_¶
logical_and¶
- Tensor.- logical_and(other)[source]¶
- Compute the element-wise AND logical operation. \[\text{out} = \text{self} \mathbin{\&} \text{other} \]- Parameters:
- other (Union[dragon.vm.torch.Tensor, number]) – The value to compute with.
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 - See also 
logical_not¶
logical_or¶
- Tensor.- logical_or(other)[source]¶
- Compute the element-wise OR logical operation. \[\text{out} = \text{self} \mathbin{|} \text{other} \]- Parameters:
- other (Union[dragon.vm.torch.Tensor, number]) – The value to compute with.
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 - See also 
logical_xor¶
- Tensor.- logical_xor(other)[source]¶
- Compute the element-wise XOR logical operation. \[\text{out} = \text{self} \oplus \text{other} \]- Parameters:
- other (Union[dragon.vm.torch.Tensor, number]) – The value to compute with.
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 - See also 
logsumexp¶
- Tensor.- logsumexp(
 dim,
 keepdim=False
 )[source]¶
- Apply the composite of log, sum, and exp. \[\text{out}_{i} = \log\sum_{j}\exp(\text{self}_{ij}) \]- Parameters:
- dim (Union[int, Sequence[int]]) – The dimension(s) to reduce.
- keepdim (bool, optional, default=False) – Whether the output tensor has dim retained or not.
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 - See also 
long¶
long_¶
lt¶
- Tensor.- lt(other)[source]¶
- Compute the element-wise less comparison. \[\text{out} = (\text{self} < \text{other}) \]- Parameters:
- other (Union[dragon.vm.torch.Tensor, number]) – The value to compare.
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 - See also 
masked_fill_¶
- Tensor.- masked_fill_(
 mask,
 value
 )[source]¶
- Fill self with the value where mask is 1. \[\text{self}_{i} = \begin{cases} \text{value}_{i}, & \text{ if } \text{mask}_{i} = 1 \\ \text{self}_{i}, & \text{ otherwise } \end{cases} \]- Parameters:
- mask (dragon.vm.torch.Tensor) – The boolean mask.
- value (number) – The value to fill.
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 
masked_select¶
- Tensor.- masked_select(mask)[source]¶
- Select the elements where mask is 1. - Parameters:
- mask (dragon.vm.torch.Tensor) – The mask for selecting.
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 
matmul¶
- Tensor.- matmul(tensor2)[source]¶
- Compute the matrix multiplication. \[\text{out} = \text{self} \times \text{tensor2} \]- Parameters:
- tensor2 (dragon.vm.torch.Tensor) – The tensor to multiply.
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 - See also 
max¶
- Tensor.- max(
 dim=None,
 keepdim=False
 )[source]¶
- Compute the max value of elements along the given dimension. - Parameters:
- dim (Union[int, Sequence[int]], optional) – The dimension(s) to reduce.
- keepdim (bool, optional, default=False) – Keep the reduced dimensions or not.
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 - See also 
maximum¶
- Tensor.- maximum(other)[source]¶
- Compute the maximum value of inputs. \[\text{out} = \max(\text{self}, \text{other}) \]- Parameters:
- other (Union[dragon.vm.torch.Tensor, number]) – The second input tensor.
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 - See also 
mean¶
- Tensor.- mean(
 dim=None,
 keepdim=False
 )[source]¶
- Compute the mean value of elements along the given dimension. - Parameters:
- dim (Union[int, Sequence[int]], optional) – The dimension(s) to reduce.
- keepdim (bool, optional, default=False) – Keep the reduced dimensions or not.
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 - See also 
min¶
- Tensor.- min(
 dim=None,
 keepdim=False
 )[source]¶
- Compute the min value of elements along the given dimension. - Parameters:
- dim (Union[int, Sequence[int]], optional) – The dimension(s) to reduce.
- keepdim (bool, optional, default=False) – Keep the reduced dimensions or not.
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 - See also 
minimum¶
- Tensor.- minimum(other)[source]¶
- Compute the minimum value of inputs. \[\text{out} = \min(\text{self}, \text{other}) \]- Parameters:
- other (Union[dragon.vm.torch.Tensor, number]) – The second input tensor.
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 - See also 
mm¶
- Tensor.- mm(mat2)[source]¶
- Compute the matrix-matrix multiplication. \[\text{out} = \text{self} \times \text{mat2} \]- Parameters:
- mat2 (dragon.vm.torch.Tensor) – The second matrix.
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 - See also 
mul¶
- Tensor.- mul(other)[source]¶
- Compute the element-wise multiplication. \[\text{out} = \text{self} \times \text{other} \]- Parameters:
- other (Union[dragon.vm.torch.Tensor, number]) – The value to multiply.
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 - See also 
mul_¶
- Tensor.- mul_(other)[source]¶
- Compute the element-wise multiplication. \[\text{self} \mathrel{\times}= \text{other} \]- Parameters:
- other (Union[dragon.vm.torch.Tensor, number]) – The value to multiply.
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 - See also 
multinomial¶
narrow¶
ndimension¶
ne¶
- Tensor.- ne(other)[source]¶
- Compute the element-wise not-equal comparison. \[\text{out} = (\text{self} \neq \text{other}) \]- Parameters:
- other (Union[dragon.vm.torch.Tensor, number]) – The value to compare.
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 - See also 
neg¶
neg_¶
new_empty¶
- Tensor.- new_empty(
 *size,
 dtype=None,
 device=None,
 requires_grad=False
 )[source]¶
- Return a tensor filled with uninitialized data. - Refer this tensor if - dtypeand- devicenot provided.- Parameters:
- size (int...) – The size of output tensor.
- dtype (str, optional) – The optional data type.
- device (dragon.vm.torch.device, optional) – The optional device of returned tensor.
- requires_grad (bool, optional, default=False) – Trueto record gradient for returned tensor.
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 - See also 
new_full¶
- Tensor.- new_full(
 size,
 fill_value,
 dtype=None,
 device=None,
 requires_grad=False
 )[source]¶
- Return a tensor filled with a scalar. - Refer this tensor if - dtypeand- devicenot provided.- Parameters:
- size (Sequence[int]) – The size of output tensor.
- fill_value (number) – The scalar to fill.
- dtype (str, optional) – The optional data type.
- device (dragon.vm.torch.device, optional) – The optional device of returned tensor.
- requires_grad (bool, optional, default=False) – Trueto record gradient for returned tensor.
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 - See also 
new_ones¶
- Tensor.- new_ones(
 *size,
 dtype=None,
 device=None,
 requires_grad=False
 )[source]¶
- Return a tensor filled with ones. - Refer this tensor if - dtypeand- devicenot provided.- Parameters:
- size (int...) – The size of output tensor.
- dtype (str, optional) – The optional data type.
- device (dragon.vm.torch.device, optional) – The optional device of returned tensor.
- requires_grad (bool, optional, default=False) – Trueto record gradient for returned tensor.
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 - See also 
new_tensor¶
- Tensor.- new_tensor(
 data,
 dtype=None,
 device=None,
 requires_grad=False
 )[source]¶
- Return a tensor initializing from the given data. - Refer this tensor if - dtypeand- devicenot provided.- Parameters:
- data (array_like) – The data to initialize from.
- dtype (str, optional) – The optional data type.
- device (dragon.vm.torch.device, optional) – The optional device of returned tensor.
- requires_grad (bool, optional, default=False) – Trueto record gradient for returned tensor.
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 - See also 
new_zeros¶
- Tensor.- new_zeros(
 *size,
 dtype=None,
 device=None,
 requires_grad=False
 )[source]¶
- Return a tensor filled with zeros. - Refer this tensor if - dtypeand- devicenot provided.- Parameters:
- size (int...) – The size of output tensor.
- dtype (str, optional) – The optional data type.
- device (dragon.vm.torch.device, optional) – The optional device of returned tensor.
- requires_grad (bool, optional, default=False) – Trueto record gradient for returned tensor.
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 - See also 
nonzero¶
norm¶
- Tensor.- norm(
 p='fro',
 dim=None,
 keepdim=False,
 out=None,
 dtype=None
 )[source]¶
- Compute the norm value of elements along the given dimension. - Parameters:
- p ({'fro', 1, 2}, optional) – The norm order.
- dim (Union[int, Sequence[int]], optional) – The dimension to reduce.
- keepdim (bool, optional, default=False) – Keep the reduced dimension or not.
- dtype (str, optional) – The data type to cast to.
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 - See also 
normal_¶
- Tensor.- normal_(
 mean=0,
 std=1
 )[source]¶
- Fill self from a normal distribution. \[\text{self} \sim \mathcal{N}(\mu, \sigma^{2}) \]- Parameters:
- mean (number, optional, default=0) – The value to \(\mu\).
- std (number, optional, default=1) – The value to \(\sigma\).
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 
numpy¶
one_¶
permute¶
permute_¶
pow¶
- Tensor.- pow(exponent)[source]¶
- Compute the power. - Parameters:
- exponent (Union[dragon.vm.torch.Tensor, number]) – The exponent value.
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 - See also 
reciprocal¶
reciprocal_¶
repeat¶
reshape¶
reshape_¶
roll¶
round¶
round_¶
rsqrt¶
rsqrt_¶
scatter¶
- Tensor.- scatter(
 dim,
 index,
 src
 )[source]¶
- Return a tensor with elements updated from the source. - Parameters:
- dim (int) – The dimension of index values.
- index (dragon.vm.torch.Tensor) – The index tensor.
- src (Union[dragon.vm.torch.Tensor, number]) – The tensor to update from.
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 - See also 
scatter_¶
- Tensor.- scatter_(
 dim,
 index,
 src,
 reduce=None
 )[source]¶
- Update elements from the source. - Parameters:
- dim (int) – The dimension of index values.
- index (dragon.vm.torch.Tensor) – The index tensor.
- src (Union[dragon.vm.torch.Tensor, number]) – The tensor to update from.
- reduce (str, optional) – 'add'or'multiply'.
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 - See also 
scatter_add¶
- Tensor.- scatter_add(
 dim,
 index,
 src
 )[source]¶
- Return a tensor with elements added from the source. - Parameters:
- dim (int) – The dimension of index values.
- index (dragon.vm.torch.Tensor) – The index tensor.
- src (Union[dragon.vm.torch.Tensor, number]) – The tensor to add from.
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 - See also 
scatter_add_¶
- Tensor.- scatter_add_(
 dim,
 index,
 src
 )[source]¶
- Add elements from the source. - Parameters:
- dim (int) – The dimension of index values.
- index (dragon.vm.torch.Tensor) – The index tensor.
- src (Union[dragon.vm.torch.Tensor, number]) – The tensor to add from.
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 - See also 
sign¶
- Tensor.- sign()[source]¶
- Return a tensor taken the sign indication of elements. \[\text{out}_{i} = \begin{cases} -1, & \text{ if } \text{self}_{i} < 0 \\ 0, & \text{ if } \text{self}_{i} = 0 \\ 1, & \text{ if } \text{self}_{i} > 0 \end{cases} \]- Returns:
- dragon.vm.torch.Tensor – The output tensor.
 - See also 
sign_¶
sin¶
size¶
sort¶
- Tensor.- sort(
 dim=- 1,
 descending=False
 )[source]¶
- Return the sorted elements. - Parameters:
- dim (int, optional, default=-1) – The dimension to sort elements.
- descending (bool, optional, default=False) – Sort in the descending order or not.
 
 - Returns:
- Sequence[dragon.vm.torch.Tensor] – The value and index tensor. 
 - See also 
split¶
- Tensor.- split(
 split_size_or_sections,
 dim=0,
 copy=True
 )[source]¶
- Return the split chunks along the given dimension. - Parameters:
- split_size_or_sections (Union[int, Sequence[int]) – The number or size of chunks.
- dim (int, optional, default=0) – The dimension to split.
- copy (bool, optional, default=True) – Copy or create the views of input.
 
 - Returns:
- Sequence[dragon.vm.torch.Tensor] – The output tensors. 
 - See also 
sqrt¶
sqrt_¶
square¶
squeeze¶
squeeze_¶
sum¶
- Tensor.- sum(
 dim=None,
 keepdim=False
 )[source]¶
- Compute the sum value of elements along the given dimension. - Parameters:
- dim (Union[int, Sequence[int]], optional) – The dimension(s) to reduce.
- keepdim (bool, optional, default=False) – Keep the reduced dimensions or not.
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 - See also 
sub¶
- Tensor.- sub(other)[source]¶
- Compute the element-wise subtraction. \[\text{out} = \text{self} - \text{other} \]- Parameters:
- other (Union[dragon.vm.torch.Tensor, number]) – The value to subtract.
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 - See also 
sub_¶
- Tensor.- sub_(other)[source]¶
- Compute the element-wise subtraction. \[\text{self} \mathrel{-}= \text{other} \]- Parameters:
- other (Union[dragon.vm.torch.Tensor, number]) – The value to be subtracted.
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 - See also 
to¶
- Tensor.- to(
 *args,
 **kwargs
 )[source]¶
- Convert to the specified data type or device. - The arguments could be - torch.dtypeor- torch.device:- x = torch.FloatTensor(1) x.to(torch.int32) # Equivalent to ``x.int()`` x.to(torch.device('cpu')) # Equivalent to ``x.cpu()`` x.to(torch.device('cuda'), torch.float32) # Convert both - Or - torch.Tensorto provide both- dtypeand- device:- a, b = torch.tensor(1.), torch.tensor(2) print(a.to(b)) # 1 - Returns:
- dragon.vm.torch.Tensor – The output tensor.
 
topk¶
- Tensor.- topk(
 k,
 dim=- 1,
 largest=True,
 sorted=True
 )[source]¶
- Return the top k-largest or smallest elements. - Parameters:
- k (int) – The number of top elements to select.
- dim (int, optional, default=-1) – The dimension to select elements.
- largest (bool, optional, default=True) – Return largest or smallest elements.
- sorted (bool, optional, default=True) – Whether to return elements in the sorted order.
 
 - Returns:
- Sequence[dragon.vm.torch.Tensor] – The value and index tensor. 
 - See also 
transpose¶
transpose_¶
tril¶
- Tensor.- tril(k=0)[source]¶
- Return the lower triangular part. \[\text{out}_{ij} = \begin{cases} 0, & \text{ if } j > i + k \\ \text{self}_{ij}, & \text{ otherwise } \end{cases} \]- Parameters:
- k (int, optional, default=0) – Diagonal above which to zero elements.
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 - See also 
tril_¶
- Tensor.- tril_(k=0)[source]¶
- Set to the lower triangular part. \[\text{self}_{ij} = \begin{cases} 0, & \text{ if } j > i + k \\ \text{self}_{ij}, & \text{ otherwise } \end{cases} \]- Parameters:
- k (int, optional, default=0) – Diagonal above which to zero elements.
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 - See also 
triu¶
- Tensor.- triu(k=0)[source]¶
- Return the upper triangular part. \[\text{out}_{ij} = \begin{cases} 0, & \text{ if } j < i + k \\ \text{self}_{ij}, & \text{ otherwise } \end{cases} \]- Parameters:
- k (int, optional, default=0) – Diagonal below which to zero elements.
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 - See also 
triu_¶
- Tensor.- triu_(k=0)[source]¶
- Set to the upper triangular part. \[\text{self}_{ij} = \begin{cases} 0, & \text{ if } j < i + k \\ \text{self}_{ij}, & \text{ otherwise } \end{cases} \]- Parameters:
- k (int, optional, default=0) – Diagonal below which to zero elements.
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 - See also 
type¶
unbind¶
- Tensor.- unbind(
 dim=0,
 copy=True
 )[source]¶
- Unpack to chunks along the given dimension. - Parameters:
- dim (int, optional, default=0) – The dimension to unpack.
- copy (bool, optional, default=True) – Copy or create the views of input.
 
 - Returns:
- Sequence[dragon.vm.torch.Tensor] – The output tensors. 
 - See also 
uniform_¶
- Tensor.- uniform_(
 low=0,
 high=1
 )[source]¶
- Fill self from a uniform distribution. \[\text{self} \sim \mathcal{U}(\alpha, \beta) \]- Parameters:
- low (number, optional, default=0) – The value to \(\alpha\).
- high (number, optional, default=1) – The value to \(\beta\).
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 
unique¶
- Tensor.- unique(
 return_inverse=False,
 return_counts=False,
 **kwargs
 )[source]¶
- Return the unique elements. - Parameters:
- return_inverse (bool, optional, default=False) – Return the inverse index or not.
- return_counts (bool, optional, default=False) – Return the counts or not.
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor.
- dragon.vm.torch.Tensor, optional – The inverse index tensor.
- dragon.vm.torch.Tensor, optional – The counting tensor.
 
 - See also 
unsqueeze¶
unsqueeze_¶
view¶
view_¶
view_as¶
- Tensor.- view_as(other)[source]¶
- Return a tensor with the same data but a different size. - Parameters:
- other (dragon.vm.torch.Tensor) – The tensor to guide the new size.
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 
where¶
- Tensor.- where(
 condition,
 y
 )[source]¶
- Select the elements from two branches under the condition. \[\text{out}_{i} = \begin{cases} \text{self}_{i} & \text{ if } \text{condition}_{i} \\ y_{i}, & \text{ otherwise } \end{cases} \]- Parameters:
- condition (dragon.vm.torch.Tensor) – The condition tensor.
- y (dragon.vm.torch.Tensor) – The tensor \(y\).
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 - See also 
var¶
- Tensor.- var(
 dim=None,
 keepdim=False
 )[source]¶
- Compute the variance value of elements along the given dimension. - Parameters:
- dim (Union[int, Sequence[int]], optional) – The dimension(s) to reduce.
- keepdim (bool, optional, default=False) – Keep the reduced dimensions or not.
 
 - Returns:
- dragon.vm.torch.Tensor – The output tensor. 
 - See also 
