local_response_normalization¶
- dragon.vm.tensorflow.nn.- local_response_normalization(
 input,
 depth_radius=5,
 bias=1.0,
 alpha=1.0,
 beta=0.5,
 data_format='NHWC',
 name=None
 )[source]¶
- Apply the local response normalization. [Krizhevsky et.al, 2012]. - The normalization is defined as: \[out_{i} = x_{i}\left(k + \frac{\alpha}{n} \sum_{j=\max(0, i-n/2)}^{\min(N-1,i+n/2)}x_{j}^2 \right)^{-\beta} \]- Parameters:
- input (dragon.Tensor) – The input tensor.
- depth_radius (int, optional, default=5) – The number of neighbouring channels to sum over.
- bias (float, optional, default=1.) – The bias constant \(k\).
- alpha (float, optional, default=1.) – The scale value \(\alpha\).
- beta (float, optional, default=0.5) – The exponent value \(\beta\).
- data_format (str, optional, default='NHWC') – 'NCHW'or'NHWC'.
- name (str, optional) – The operation name.
 
 - Returns:
- dragon.Tensor – The output tensor. 
 
