matmul¶
- dragon.vm.tensorflow.linalg.- matmul(
 a,
 b,
 name=None
 )[source]¶
- Compute the matrix multiplication. \[\text{out} = a \times b \]- The behavior depends on the shape of input tensors: - If both tensors are 1d, computes the vector product.
- If tensors are 1d and >=2d, computes the vector-matrix multiplication.
- If tensors are >=2d and 1d, computes the matrix-vector multiplication.
- If both tensors are >= 2d, computes the matrix-matrix multiplication.
- If one tensor is >= 3d, applies batching and broadcasting to the computation.
 - Examples: - # Vector x Vector a = tf.ones((2,), 'float32') b = tf.ones((2,), 'float32') print(tf.linalg.matmul(a, b)) # Vector x Matrix a = tf.ones((2,), 'float32') b = tf.ones((2, 3), 'float32') print(tf.linalg.matmul(a, b)) # Matrix x Vector a = tf.ones((3, 2), 'float32') b = tf.ones((2,), 'float32') print(tf.linalg.matmul(a, b)) # Matrix x Matrix a = tf.ones((2, 3), 'float32') b = tf.ones((3, 2), 'float32') print(tf.linalg.matmul(a, b)) - Parameters:
- a (dragon.Tensor) – The matrix \(a\).
- b (dragon.Tensor) – The matrix \(b\).
- name (str, optional) – The operation name.
 
 - Returns:
- dragon.Tensor – The output tensor. 
 
