categorical_crossentropy¶
- dragon.vm.tensorflow.keras.losses.- categorical_crossentropy(
 y_true,
 y_pred,
 axis=- 1,
 reduction='mean'
 )[source]¶
- Compute the categorical cross entropy with contiguous targets. - Examples: - y_true = tf.constant([[0., 1.], [1., 0.]]) y_pred = tf.constant([[0.5, 0.5], [0.3, 0.7]]) print(tf.keras.cost.categorical_crossentropy(y_true, y_pred)) # 0.8030813 - Parameters:
- y_true (dragon.Tensor) – The ground truth tensor.
- y_pred (dragon.Tensor) – The logits tensor.
- axis (int, optional, default=-1) – The reduction axis.
- reduction ({'none', 'sum', 'mean'}, optional) – The reduction method.
 
 - Returns:
- dragon.Tensor – The loss. 
 
