resize¶
- dragon.vision.- resize(
 inputs,
 sizes=None,
 scales=None,
 mode='linear',
 align_corners=False,
 data_format='NCHW',
 **kwargs
 )[source]¶
- Resize input via interpolating neighborhoods. - sizesor- scaleswill be selected by- data_format:- x, sizes = dragon.ones((1, 2, 3, 4)), (6, 6) a = dragon.vision.resize(x, sizes, data_format='NCHW') # Shape: (1, 2, 6, 6) c = dragon.vision.resize(x, sizes, data_format='NHWC') # Shape: (1, 6, 6, 4) - Use - align_cornersto determine the input coordinates in linear interpolating:- # align_corners = False # Use half-pixel transformation scale = float(in_size) / float(out_size) in_coord = (out_coord + 0.5) * scale - 0.5 # align_corners = True # Use align-corners transformation scale = float(in_size - 1) / float(out_size - 1) in_coord = out_coord * scale - Parameters:
- inputs (dragon.Tensor) – The input tensor.
- sizes (Union[int, Sequence[int], dragon.Tensor], optional) – The output dimensions.
- scales (Union[float, Sequence[float], dragon.Tensor], optional) – The scale along each input dimension.
- mode (str, optional, default='nearest') – 'nearest'or'linear'.
- align_corners (bool, optional, default=False) – Whether to align corners in linear interpolating.
- data_format (str, optional, default='NCHW') – 'NCHW'or'NHWC'.
 
 - Returns:
- dragon.Tensor – The output tensor. 
 
