RMSprop¶
- class dragon.optimizers.RMSprop(
 lr=0.01,
 momentum=0,
 alpha=0.9,
 eps=1e-08,
 **kwargs
 )[source]¶
- The optimizer to apply RMSprop algorithm. [Hinton et.al, 2013]. - The RMSprop update is defined as: \[\text{RMSprop}(g) = \text{lr} * m_{t} \\ \quad \\ \text{where} \quad \begin{cases} v_{t} = \alpha * v_{t-1} + (1 - \alpha) * g^{2} \\ m_{t} = \text{momentum} * m_{t-1} + \frac{g}{\sqrt{v_{t}} + \epsilon} \end{cases} \]
__init__¶
- RMSprop.- __init__(
 lr=0.01,
 momentum=0,
 alpha=0.9,
 eps=1e-08,
 **kwargs
 )[source]¶
- Create a - RMSPropoptimizer.- Parameters:
- lr (float, optional, default=0.01) – The initial value to \(\text{lr}\).
- momentum (float, optional, default=0) – The initial value to \(\text{momentum}\).
- alpha (float, optional, default=0.9) – The initial value to \(\alpha\).
- eps (float, optional, default=1e-8) – The initial value to \(\epsilon\).
 
 
Methods¶
apply_gradients¶
- Optimizer.- apply_gradients(grads_and_vars)[source]
- Apply the gradients on variables. - Parameters:
- grads_and_vars (Sequence[Sequence[dragon.Tensor]]) – The sequence of update pair.
 
 
