pool2d¶
- dragon.nn.- pool2d(
 inputs,
 kernel_shape,
 strides,
 pads=0,
 padding='VALID',
 mode='max',
 global_pool=False,
 ceil_mode=False,
 data_format='NCHW',
 **kwargs
 )[source]¶
- Apply the 2d pooling. - Set modefor the specific pooling type, default ismaxpool.
- Use global_poolto apply the global pooling further.
- If data_formatis'NCHW', excepts input shape \((N, C, H, W)\), and output shape is \((N, C, H_{\text{out}}, W_{\text{out}})\).
- If data_formatis'NHWC', excepts input shape \((N, H, W, C)\), and output shape is \((N, H_{\text{out}}, W_{\text{out}}, C)\).
- If paddingis'VALID',padscontrols the explicit padding size. Otherwise, size are computed automatically use the given method.
 - Examples: - x = dragon.ones((1, 2, 2, 2)) y = dragon.nn.pool2d(x, kernel_shape=2, strides=2) assert y.shape == (1, 2, 1, 1) - Parameters:
- inputs (dragon.Tensor) – The input tensor.
- kernel_shape (Union[int, Sequence[int]], required) – The shape of pooling window.
- strides (Union[int, Sequence[int]], required) – The stride of pooling window.
- pads (Union[int, Sequence[int]], optional, default=0) – The zero padding size.
- padding (str, optional, default='VALID') – 'VALID','SAME','SAME_UPPER'or'SAME_LOWER'.
- mode (str, optional, default='max') – 'max'or'avg'.
- global_pool (bool, optional, default=False) – Apply the global pooling or not.
- ceil_mode (bool, optional, default=False) – Ceil or floor the boundary.
- data_format (str, optional, default='NCHW') – 'NCHW'or'NHWC'.
 
 - Returns:
- dragon.Tensor – The output tensor. 
 
- Set 
