log_softmax¶
- dragon.nn.- log_softmax(
 inputs,
 axis=- 1,
 inplace=False,
 **kwargs
 )[source]¶
- Compute the composite of logarithm and softmax. - The LogSoftmax function is defined as: \[\text{LogSoftmax}(x) = \log(\frac{\exp(x_{i})}{\sum \exp(x_{j})}) \]- The argument - axiscould be negative:- x = dragon.random.uniform((2, 3), -0.1, 0.1) print(dragon.nn.log_softmax(x, 1)) print(dragon.nn.log_softmax(x, -1)) # Equivalent - Parameters:
- inputs (dragon.Tensor) – The input tensor.
- axis (int, optional, default=-1) – The axis to reduce.
- inplace (bool, optional, default=False) – Call in-place or return a new tensor.
 
 - Returns:
- dragon.Tensor – The output tensor. 
 
