layer_norm¶
- dragon.nn.- layer_norm(
 inputs,
 axis=- 1,
 epsilon=1e-05,
 **kwargs
 )[source]¶
- Apply the layer normalization. [Ba et.al, 2016] - The normalization is defined as: \[y = \frac{x - \mathrm{E}[x]} {\sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta \]- Parameters:
- inputs (Sequence[dragon.Tensor]) – The tensor x,gammaandbeta.
- axis (int, optional, default=-1) – The start axis of normalized dimensions.
- epsilon (float, optional, default=1e-5) – The value to \(\epsilon\).
 
- inputs (Sequence[dragon.Tensor]) – The tensor 
 - Returns:
- dragon.Tensor – The output tensor. 
 
