hardsigmoid¶
- dragon.nn.- hardsigmoid(
 inputs,
 alpha=0.2,
 beta=0.5,
 inplace=False,
 **kwargs
 )[source]¶
- Apply the hard sigmoid function. - The HardSigmoid function is defined as: \[\text{HardSigmoid}(x) = \max(0, \min(1, \alpha * x + \beta)) \]- Examples: - x = dragon.constant([-2.5, -1., 0., 1., 2.5]) print(dragon.nn.hardsigmoid(x)) - Parameters:
- inputs (dragon.Tensor) – The input tensor.
- alpha (float, optional, default=0.2) – The value to \(\alpha\).
- beta (float, optional, default=0.5) – The value to \(\beta\).
- inplace (bool, optional, default=False) – Call in-place or return a new tensor.
 
 - Returns:
- dragon.Tensor – The output tensor. 
 
