drop_block¶
- dragon.nn.- drop_block(
 inputs,
 ratio=0.1,
 block_size=1,
 data_format='NCHW',
 inplace=False,
 **kwargs
 )[source]¶
- Set the blocks over input to zero randomly. [Ghiasi et.al, 2018]. - The DropBlock function is defined as: \[\text{DropBlock}(x_{ijk}) = x_{ijk} * (r_{ik} \sim \mathcal{B}(1, 1 - \gamma)) \\ \quad \\ \text{where}\quad \gamma = \frac{\text{ratio}}{\text{block\_size}^{n}} \frac{\text{feat\_size}^{n}}{(\text{feat\_size} - \text{block\_size} + 1)^n} \]- Examples: - x = dragon.ones((1, 3, 5, 5), 'float32') print(dragon.nn.drop_block(x, ratio=0.5, block_size=3)) - Parameters:
- inputs (dragon.Tensor) – The input tensor.
- ratio (Union[float, dragon.Tensor], optional, default=0.1) – The probability to zero a block.
- block_size (int, optional, default=7) – The spatial block size.
- data_format (str, optional, default='NCHW') – 'NCHW'or'NHWC'.
- inplace (bool, optional, default=False) – Call in-place or return a new tensor.
 
 - Returns:
- dragon.Tensor – The output tensor. 
 
