conv3d¶
- dragon.nn.- conv3d(
 inputs,
 kernel_shape=3,
 strides=1,
 pads=0,
 dilations=1,
 group=1,
 padding='VALID',
 data_format='NCHW',
 **kwargs
 )[source]¶
- Apply the 3d convolution. - If data_formatis'NCHW', excepts input shape \((N, C_{\text{in}}, D, H, W)\), weight shape \((C_{\text{out}}, C_{\text{in}}, D_{\text{k}}, H_{\text{k}}, W_{\text{k}})\), and output shape is \((N, C_{\text{out}}, D_{\text{out}}, H_{\text{out}}, W_{\text{out}})\).
- If data_formatis'NHWC', excepts input shape \((N, H, W, D, C_{\text{in}})\), weight shape \((C_{\text{out}}, D_{\text{k}}, H_{\text{k}}, W_{\text{k}}, C_{\text{in}})\), and output shape is \((N, D_{\text{out}}, H_{\text{out}}, W_{\text{out}}, C_{\text{out}})\).
- If paddingis'VALID',padscontrols the explicit padding size. Otherwise, size are computed automatically use the given method.
 - x = dragon.ones((1, 2, 2, 2, 2)) w = dragon.ones((3, 2, 1, 1, 1)) y = dragon.nn.conv3d([x, w], kernel_shape=1) assert y.shape == (1, 3, 2, 2, 2) - Parameters:
- inputs (Sequence[dragon.Tensor]) – The tensor x,weightand optionalbias.
- kernel_shape (Union[int, Sequence[int]], optional, default=3) – The shape of convolution window.
- strides (Union[int, Sequence[int]], optional, default=1) – The stride of convolution window.
- pads (Union[int, Sequence[int]], optional, default=0) – The zero padding size.
- dilations (Union[int, Sequence[int]], optional, default=1) – The rate of dilated convolution.
- group (int, optional, default=1) – The number of groups to split channels into.
- padding (str, optional, default='VALID') – 'VALID','SAME','SAME_UPPER'or'SAME_LOWER'.
- data_format (str, optional, default='NCHW') – 'NCHW'or'NHWC'.
 
- inputs (Sequence[dragon.Tensor]) – The tensor 
 - Returns:
- dragon.Tensor – The output tensor. 
 
- If 
