GRU¶
- class dragon.nn.GRU(
 input_size,
 hidden_size,
 num_layers=1,
 bidirectional=False,
 dropout=0,
 **kwargs
 )[source]¶
- Apply a multi-layer gated recurrent unit (GRU) RNN. [Cho et.al, 2014]. - The data format of inputs should be \((T, N, C)\): - t, n, c = 8, 2, 4 m = dragon.nn.GRU(8, 16) x = dragon.constant([t, n, c], 'float32') y = m(x) 
__init__¶
- GRU.- __init__(
 input_size,
 hidden_size,
 num_layers=1,
 bidirectional=False,
 dropout=0,
 **kwargs
 )[source]¶
- Create a - GRUmodule.- Parameters:
- input_size (int) – The dimension of input.
- hidden_size (int) – The dimension of hidden state.
- num_layers (int, optional, default=1) – The number of recurrent layers.
- bidirectional (bool, optional, default=False) – Whether to create a bidirectional lstm.
- dropout (number, optional, default=0) – The dropout ratio.
 
 
