ctc_loss¶
- dragon.losses.- ctc_loss(
 inputs,
 padding_mask=- 1,
 **kwargs
 )[source]¶
- Compute the ctc loss with batched labels. [Graves & Gomez, 2006]. - The shape of - inputand- targetshould be \((T, N, C)\), \((N, C)\) respectively, where \(T\) is the sequence length, \(N\) is the batch size, and \(C\) is max label length. The range of- labelsshould be \([1, C)\), as \(0\) is reserved for blank.- Use - padding_maskto fill it when length is not sufficient.- Parameters:
- inputs (Sequence[dragon.Tensor]) – The tensor inputandtarget.
- padding_mask (int, optional, default=-1) – The mask for padding the redundant labels.
 
- inputs (Sequence[dragon.Tensor]) – The tensor 
 - Returns:
- dragon.Tensor – The output tensor. 
 
